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ABSTRACT

 
The quantitative characterization of the cornea’s 

ultrastructure is an important component in clinical studies 
and ophthalmologic research for investigating various 
corneal pathologies such as Fuch’s dystrophy, bullous 
keratopathy, and macular corneal dystrophy. The spatial 
ordering of the stromal fibrils is a good predictor of corneal 
transparency and light scattering. In this paper this structure 
is characterized by estimating the probability density 
function (PDF) associated with some features of the radial 
distribution function of fibrils seen in electron micrographs 
of the stroma. A method derived from the Support Vector 
Data Description (SVDD) is used to estimate this PDF. 
Experiments using electron micrographs of normal and 
swollen rabbit corneas are used to illustrate the approach. 
 

Index Terms— PDF estimation, corneal pathologies 
support vector methods, fibril ordering.
 

1. INTRODUCTION 
 

The quantitative characterization of the cornea’s 
ultrastructure can play an important role in clinical studies 
and ophthalmologic research for studying various corneal 
pathologies. The cornea is the transparent part of the eye’s 
wall having a thickness of approximately 0.5 mm in humans 
and 0.4 mm in rabbits.  The region known as the stroma 
comprises roughly 90% of the cornea’s thickness. The 
stroma is a layered structure that is made up of many 
stacked sheets known as lamellae, with corneal cells 
interspersed between the lamellae making up about 3% to 
5% of the total volume of the stroma.  As shown in Figure 
1, each lamella is composed of long thin collagen fibrils that 
are embedded in an optically homogeneous ground 
substance.  These fibrils provide the mechanical strength 
needed to maintain the cornea’s curvature [1-6].  

In order for normal vision to occur, it is imperative that 
the cornea maintain its high degree of transparency. One 
important factor in corneal transparency is the degree of 
spatial order among the fibrils within the stroma.  That is, 
although the individual fibrils are extremely weak scatterers 
of light, it has been demonstrated that any degradation in the 
spatial arrangement of fibrils can result in increased light 
scattering and hence a loss of transparency [1-6].   

Most modern theories of corneal transparency are based 
on the assumption that the fibrils within the stroma possess 

some amount of spatial ordering.  The assumed degree of 
spatial order is the primary difference among these theories.  
For example, Maurice showed that the amount of light 
scattered from randomly arranged fibrils would be too great 
for normal vision occur [1]. As a result, he developed a 
theory in which he assumed perfect long-range crystalline 
order among the fibrils and showed that this model predicts 
an amount of light scattering that is in accordance with 
normal transparency.  Since electron micrographs (EM) of 
corneas do not show the fibrils to be arranged in a perfect 
crystalline lattice, Maurice had to also assume that the 
structures seen in EM were artifacts, caused by the 
preparation of the EM [1-3].   

Although EM do not show fibrils arranged in perfect 
crystalline order they also do not show the fibrils to be 
arranged randomly.  Instead, the fibrils are seen to have 
what is known as short-range order which is characteristic 
of the molecular arrangement of fluids.  Hart and Farrell 
showed that the short range order seen in EM can be 
quantitatively characterized by a radial distribution function, 
g(r) [6-8]. They were also able to show that the short-range 
spatial order seen in EM was sufficient to reduce the 
predicted light scattering to be consistent with normal 
transparency.  Subsequently, light scattering experiments 
have shown that the wavelength dependence of corneal 
transparency agrees with short-range order as seen in EM 
[3,4]. 

Often the loss of transparency seen in diseased or 
damaged corneas is caused, at least in part, to a disruption in 
the spatial arrangement of fibrils. We characterize the 
arrangement of corneal fibrils by computing the PDF of 
corneal features. In the next section, we illustrate the use of 
a method derived from SVDD [9,10] to estimate the PDF 
associated with fibril radial distributions from EMs of 
freshly excised normal and swollen rabbit corneas.  The 
resulting PDF can be used to effectively discriminate 
between normal and swollen EMs. An alternate SVM-based 
PDF estimation approach not pursued here uses regression 
on the Cumulative Distribution Function as reported in [11].  

2. SVDD PDF ESTIMATE 

Consider a dataset {xi, i=1,…,N}. We seek a kernel-
based estimate for the PDF of the data, f(x), expressed as a 
linear mixture of kernels (LMK): 
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Figure 1 EM cross-section of normal (top) and 15% swollen 

(bottom) rabbit cornea stromal fibrils with 1 micron scale bar. 
where the i are non-negative weights that sum to one, and 
K is a non-negative kernel function which integrates to one.   

Before proceeding with the derivation of the density 
estimator that we will explicitly apply to features derived 
from corneal EM, we first note that the Parzen estimator is a 
standard kernel based approach to PDF estimation that, 
unlike support vector techniques, provides equal weight to 
each point in the training data. Thus, when i= 1/N, Eq.(1) 
becomes the Parzen density estimator [10,12].  However, 
because all the data are included in the Parzen density 
estimator, it does not provide a sparse representation for the 
PDF [10,12]. On the other hand, recent approaches in 
machine learning such as the support vector machines 
(SVMs) and relevance vector machines (RVMs) are sparse 
methods that suggest alternate means of finding the weights 

i to approximate f(x).  Here we use an SVM approach 
known as the Support Vector Data Description (SVDD) for 
density estimation.  While SVDD was originally developed 
for one-class classification [10], we show here that it can 
also be used to compute the underlying distribution f(x) in 
the feature space of the data points {xi}.  One advantage that 
SVDD approach provides is that it can accurately represent 
arbitrary complex non-Gaussian and multi-modal 
distributions. More importantly, unlike the Parzen estimator 
it also provides a sparse computationally efficient 
representation for f(x) such that most of the i are zero. 
     The SVDD is derived by considering the following 
geometric problem:  find the smallest D-dimensional sphere  

2 2  || ||S Rx : x a  (2) 

enclosing the entire set of training exemplars T, where: 
, 1, ..,DT ixi M .       (3) 

This constrained optimization problem is solved by defining 
and then minimizing a Lagrangian. It can be shown that, for 

the optimal solution, only a small subset of the i are non-
zero (sparsity), and the center of the sphere a is the center of 
mass of all support vectors which lie at the optimal 
hypersphere’s boundary [10]. The SVDD test statistic is 
given by the square distance to the boundary: 
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where ,i jx x  is an inner product in D . 
The SVDD test statistic can be generalized to allow for 

non-spherical support regions by replacing the linear inner-
product with a non-linear kernel function . If (K x, y)
K (x, y)  is a continuous, symmetric, and positive semi-
definite function in L2, then it follows that a mapping, 

( )x , exists that implicitly maps the training data points 

from D into a higher (possibly infinite) dimensional 
induced feature space such that  represents an inner 
product in this new induced feature space:  

(K x, y)

( )  ( ), ( )K x, y x y .  (5) 
The SVDD test statistic is then rewritten in terms of the 
kernel, , as  (K x, y)
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where c is the center of the minimal hypersphere in the 
induced feature space: .  It should be noted that, 

although the SVDD function is a sphere in the induced 
feature space, in the original feature space it models the 
support of an arbitrary non-Gaussian, multi-modal function 
that more accurately captures the distribution of the data. 

 ( )i ii
c

In this paper, we use a Gaussian radial basis function 
(RBF) as the kernel function [10].  Since Gaussian RBF 
satisfy the property that , the SVDD function 
simplifies to 

( ) 1K x, x
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i
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where C is a constant offset term defined by 

,
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( )SVDD x  includes a linear mixture of terms comprised of 
the kernel that we have chosen to model the PDF for the 
data xi.  Since the i are non-negative and sum to one, and 
the kernel function integrates to one, the right hand side of 
the SVDD function provides an LMK estimate of the 
desired PDF given in Eq.(1). Furthermore, since many of 
the i are zero, the SVDD estimate provides a sparse 
representation that allows for fast evaluation of the 
underlying distribution.  This sparse representation is more 
amenable to subsequent analysis of the PDF such as 
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numerically evaluating its value or using optimization to 
find its modes. 

The RBF has one free parameter: the scale parameter .  
This parameter affects the tightness-of-fit for the training 
data.  As explained in [9,10] , it is a measure of how well 
the SVDD generalizes to unseen data.  By varying the scale 
parameter of the RBF, the SVDD can determine multiple 
regions of support for a dataset.  This allows the SVDD to 
model non-Gaussian, multi-modal distributions. The 
estimation of this parameter can be done using various 
methods including cross validation or minimax [9,10]. 

 
3. FEATURE EXCTRACTION 

To obtain the features used for SVDD classification and 
PDF estimation, EM images from both normal and swollen 
rabbit corneas were analyzed.  The magnification of the 
EMs ranged from 48,450 to 53,200 and were scanned at a 
resolution of 100 m.  A total of thirteen EMs from normal 
corneas, four EMs from 15% swollen corneas, and three 
EMs from 25% swollen corneas were used. We followed 
image analysis algorithms similar to [13] to locate the fibril 
centers in the EMs.  The fibril center data was then used to 
determine the radial distribution function, g(r), for each EM.  
We note here that g(r) provides a measure of the degree of 
spatial ordering in liquid like structures [7,8] and thus can 
be used to determine the amount of fibril ordering in each 
EM.  Specifically, g(r) describes how the density of fibrils 
varies as a function of the radial distance from any given 
fibril center. That is, let  denote the average fibril number 
density for the entire EM and assume a reference fibril is 
located at the origin of a local coordinate system.  Then the 
mean fibril density at a distance r from the reference fibril 
differs from  by the factor g(r).   

At this point, it is important to recall that any 
degradation in the spatial ordering of fibrils can cause an 
increase in light scattering and as a result a decrease in 
corneal transparency.  As just noted, g(r) provides a 
measure of the degree of fibril ordering.  Thus, it is 
reasonable to expect that g(r) can be used to distinguish 
normal (i.e. highly transparent) corneas from abnormal 
corneas whose transparency is less than normal.  

Operationally, the process for determining g(r) for an 
EM is illustrated in Figure 2.  Specifically, since an EM has 
finite extent, one must first choose a maximum distance, 
rmax, over which g(r) will be determined and then inscribe a 
rectangle whose sides are at a distance rmax from the 
corresponding nearest edge of the EM.  The number of 
usable reference fibrils kc lie inside the rectangle.  For each 
usable reference fibril (e.g. the yellow fibril in Figure 2) a 
series of “rings” of width dr is laid down out to a distance 
rmax.  For the kth reference fibril,  the number of fibrils in 
the nth ring, , (e.g. the light blue fibrils in Figure 2) is 

determined and then compared to the mean number, A(r) 

where A(r) is the area of a ring a distance r from the 
reference fibril.  Finally, the results are averaged over the kc 
reference fibrils.  Therefore g(r) can be expressed as 
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In order to increase the number of samples for training 
and testing, each EM was divided into thirds and g(r) was 
computed for each third of an EM. 

A plot of g(r) for the EM shown in Figure 2 is given in 
Figure 3.  As indicated in Figure 3, the magnitude and 
location of the first peak along with the magnitude and 
location of the first minimum are the four features used for 
classification and PDF estimation.  We have selected these 
features because the magnitude and location of these 
maxima and minima are directly correlated to the degree of 
spatial ordering among the fibrils [7,8]. 

 

 
Figure 2 Illustration of how to compute g(r) for each EM. 

 
4. EXPERIMENTS 

As described in the previous section, g(r) was 
computed for each third of an EM.  Dividing the EM into 
thirds resulted in 39 samples from normal cornea and 21 
samples from swollen corneas.  Twenty samples from the 
normal corneas and ten samples from the swollen corneas 
were used for training.  The remaining samples were used 
for testing.  

An RBF kernel function was used with the training data 
to optimize an SVDD algorithm across the four 
classification features.  This yielded the support of the 
training data and the corresponding optimal coefficients, i.  
Eq.(1) was used to generate the PDF associated with these 
optimal coefficients.  To illustrate the result, Figure 4 shows 
the resulting PDF projected into the two dimensional space 
defined by the (normalized and centered) magnitude of the 
first maximum and minimum of g(r).   The smooth and 
cross-hatched part of the plot corresponds to the PDF for 
normal and swollen corneas respectively. 

Figure 5 shows the contour plot associated with Figure 
4 with the overlap between the two PDFs clearly visible.  
The solid symbols represent the support vectors obtained 
when the SVDD algorithm was optimized and the plus signs 
represent the test data.  The green line in Figure 5 is a 
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decision boundary that is obtained using a likelihood ratio 
test (LRT) criteria equal to one.  When only the two g(r) 
features used to generate Figure 4 and Figure 5 are used for 
classification, approximately 93% of the test EMs are 
correctly classified.   Provided one can identify the pertinent 
features, these results are indicative of the level of accuracy 
obtainable using the SVDD method and shows that it 
generalizes well to new data.  In addition to being a robust 
method of classification,  Figure 4 and Eq.(1) show that 
SVDD can also be used to associate a probability with any 
given test vector.    

 
Figure 3 The radial distribution function for the EM shown in 
Figure 2 with features used for PDF estimation indicated. 

 
Figure 4 PDF estimation for corneal features 

 
5. CONCLUSION 

We use a method derived from SVDD to estimate the 
PDF associated with features of the radial distribution 
function to characterize the spatial arrangement of fibrils in 
the cornea. This distribution has implications for the 
cornea’s optical properties. The sensitivity of this approach 
is illustrated on rabbit corneal EMs. Using a LRT the PDF 
is used to correctly discriminate between normal and 
swollen corneas.

 

 
Figure 5 Contour plot of PDF shown in Figure 4.  Correct 

classification is greater than 90%. 
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